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Motivation



Motivation

• What is the role of households portfolio choice in wealth inequality?

• Recent evidence suggests that return to savings is highly increasing in
wealth Bach et al. (2020); Fagereng et al. (2020)

- scale dependent returns

- results hold even within narrow asset classes!

• Portfolio choice and scale dependence usually abscent in workhorse
models of wealth accumulation (e.g. Aiyagari, 1994)

- hard to get large top wealth shares

- unrealistic participation rates and risky shares



This Paper

• Proposes a model that explicitly incorporates households portfolio
decisions.

• Model provides better fit than workhorse model of wealth
accumulation
−→ and adds more realism to households balance sheets.

• Intends to shed light on the effect of portfolio adjustment frictions in
wealth inequality
−→ adjustment cost amplifies precautionary channel.



Stylized Facts Robustness

Risky asset share steeply increasing across wealth distribution!
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Notes: Data from the Survey of Consumer Finances (SCF) for the period 1998-2019. Risky assets defined as in Chang

et al. (2018) but without including non-actively managed business in Financial Wealth definition. Detail



Stylized Facts

Extensive margin matters for portfolio choice
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Notes: Data from the Survey of Consumer Finances (SCF) for the period 1998-2019. Risky assets defined as in Chang
et al. (2018) but without including non-actively managed business in Financial Wealth definition. Participation rate defined
as 1{R > 0}



Related Literature

Combine two workhorse macro models + adjustment frictions

• Portfolio choice models Merton (1969); Samuelson (1969)

• Bewley models Bewley (1986); Huggett (1993); Aiyagari (1994)

• Non-convex (fixed) adjustment costs Kaplan and Violante (2014)

Related Work:

1. Empirical evidence of portfolio heterogeneity
Vissing-Jorgensen (2002); Kuhn et al. (2020); Bach et al. (2020); Fagereng et al. (2020); Mart́ınez-Toledano (2020)

2. Models of wealth inequality with idiosyncratic returns to wealth
Benhabib et al. (2011, 2015); Gabaix et al. (2016); Gomez (2018); Hubmer et al. (2020); Xavier (2020)

3. Continuous time HA models
Achdou et al. (2017); Kaplan et al. (2018)



Model



Setup Advantages

Continuous time, partial-equilibrium heterogeneous agent model with

1. Rich households balance sheets
• safe and risky assets
• “hard” and “soft” borrowing constraints
• fixed adjustment cost in risky asset

2. Uninsurable labor income risk.

Problem consists of solving a system of two PDEs

• Hamilton-Jacobi-Bellman (HJB) equation for individual choices

• Kolmogorov Forward (KF) equation for evolution of distribution



Household Balance Sheets

• Stochastic income follows a two-state Poisson process:

zt ∈ {zL, zH}

• Safe wealth bt , risky wealth at

• Changes in risky asset holdings entail a fixed adjustment cost κ
=⇒ stopping-time element

• Stochastic return in risky asset:

dr at = µ dt + σ dWt

• Working assumption: Labor income independent from capital
income
−→ second order in infinite-horizon settings (no life cycle)

−→ consistent with empirical literature Cocco et al. (2005); Fagereng et al. (2017)



Household’s Problem

Households are heterogeneous in their wealth (a, b), income z , and the
return on savings

υk(a, b, z) = max
{ct},τ

E0

∫ τ

0
e−ρtu(ct) + e−ρτE0 υ

∗
k(aτ + bτ , z)

dat = drat at ;

dbt = (zt + rbt (bt)bt − ct)dt

zt ∈ {zL, zH} Poisson with intensities λL, λH

drat = µdt + σ dWt

a ≥ 0; b ≥ b,

where

υ∗k(a + b, z) = max
a′,b′

υk(a′, b′, z) s.t. a′ + b′ = a + b − κ



HJB equation

ρυ(a, b, z) = max
c

u(c) +

Safe Asset : + ∂bυ(a, b, z)(z + rbb − c)

Risky Asset : + µ(ra)a∂aυ(a, b, z) +
σ2(ra)a2

2
∂aaυ(a, b, z)

Labor Income : +
∑
z ′∈Z

λz→z ′
(
υ(a, b, z ′)− υ(a, b, z)

)
,

with a state-constraint boundary condition

∂bυ(a, b) ≥ u′(z + rbb)

and a constraint that

υ(a, b, z) ≥ υ∗(a + b, z) ∀ a, b



HJB quasi-variational inequality Derivation

Suppressing dependence on (a, b, z), the HJBQVI can be written as

min
{
ρυ −max

c
{u(c)−µa ∂aυ −

σ2a2

2
∂aaυ − (z + rbb − c) ∂bυ

−
∑
z ′∈Z

λz→z ′
(
υ(z ′)− υ(z)

)
, υ −Mυ

}
= 0,

where υ∗ =Mυ, and M is known as the “intervention operator” (See
e.g., Azimzadeh et al., 2018)

In matrix notation

min
{
ρv− u(v)− A(v) v, v− v∗(v)

}
= 0



Kolmogorov-Forward Equation

Without adjustment the KF equation is

0 = −∂a(µag(a, b, z)) +
1

2
∂aa(σ2a2g(a, b, z))− ∂b[sb(a, b, z) g(a, b, z)]

− λz→z ′g(a, b, z) + λz
′→zg(a, b, z ′),

In matrix notation

0 = ATg

• Caveat: Mathematical formulation of the KF for impulse control
problem is not straightforward!

• However, turns out to be significantly easier to deal once discretized
Numerical Solution



Quantitative Analysis



Parametrization

Parameter Description Value Source/Target

Households
γ Risk aversion 2 Standard
ρ Subjective discount rate 0.053 Standard (β = 0.95)

Assets
b Borrowing limit -1 1 times avg. income
$ Interest rate wedge 0.06 Kaplan et al. (2018)
rb Safe asset return 0.02 Gomes and Michaelides (2005)
µ Risky asset drift 0.06 Gomes and Michaelides (2005)
σ Risky asset volatility 0.18 Gomes and Michaelides (2005)
κ Adjustment cost 0.23 Participation Rate

Income Process
z1, z2 Income states 0.79, 1.21 σz = 0.21, ϕz = 0.9, E(z) = 1
λ1, λ2 Income jumps 0.25, 0.25 Eq. (1)



The role of κ

Notes: Connected dots denote the size of the adjustment region
out of the total state-space. Vertical line represents the calibrated
value for κ

• Small frictions can generate
large inaction ranges

• Calibrated κ represents only
0.75% of adjusting households
stock.

• Inaction range highly increasing
in κ

• Common interpretations: opp
cost, processing cost, mental
accounting.



“Fat-tail Aiyagari” as a useful benchmark

Measure Data Baseline Model
Fat-tail

Aiyagari (1994)

Top 1% 37.5 22.2 11.5
Top 5% 64.6 49.6 35.2
Top 10% 77.8 66.1 52.6
Middle 40% 19.5 33.8 38.3
Bottom 50% 0.98 0.10 9.2

• When κ = 0, the model reduces to a combination of workhorse
models of wealth accumulation (Aiyagari, 1994) + portfolio choice
(Merton, 1969) −→ “Fat-tail Aiyagari”

• Under the same calibration, the introduction of adj. friction (i.e.
κ > 0) substantially improves the fit!

−→ adjustment cost narrows the gap in top shares to roughly half

• Still much to go (e.g., no type dependence)



The amplifying effect of κ

• Assume wealth inequality increases due to a permanent decrease in
labor income risk (Why?)

• How does the adjustment cost affect wealth top shares?

• Turns out that κ amplifies top shares by a factor over 8!
−→ scale dependence feeds precautionary channel

Baseline Fat-tail Aiyagari (1994)
σν = 0.20 σν = 0.18 % change σν = 0.20 σν = 0.18 % change

Top 1% 22.2 33.9 52.70 11.5 12.2 6.09
Top 5% 49.6 64.1 29.23 35.2 36.6 3.98
Top 10% 66.1 80.1 21.18 52.6 53.6 1.90



Decomposing top shares into luck and scale

In the lens of the model, differences in wealth accumulation are generated
by

• luck : idiosyncratic shocks to income and returns

• scale: portfolio re-balancing entails an adjustment cost κ

However, luck depends on the participation decision and thus in the scale
component =⇒ Effects are not additively separable

Our approach: re-calibrate κ after a permanent shock (e.g. to the
income process) to create counterfactual with equal scale component

∆ Top Shares

(∆Top shares |κ = κ′)

luck scale



Decomposing top shares into luck and scale

σν = 0.20 σν = 0.18 % change % scale % luck

Top 1% 22.2 33.9 52.7 88.0 12.0
Top 5% 49.6 64.1 29.2 88.3 11.7
Top 10% 66.1 80.1 21.2 89.3 10.7

• Roughly 90% of the change in top shares is explained by the scale
component!

• Results consistent with the amplifying effect discussed earlier



Conclusion



Concluding Remarks

• Portfolio choice matters! −→ risky share is steeply increasing across
wealth distribution.

• Adjustment frictions amplify the effect of portfolio choice in
inequality by introducing scale dependence.

• Portfolio choice + small Adjustment frictions narrow the gap in top
wealth shares to ≈ half.



Thanks!
For questions feel free to reach out to lrosso@fen.uchile.cl

lrosso@fen.uchile.cl
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Q & A



Safe and Risky asset definitions Return

I group assets into the following categories:

Safe Assets = Checking Accounts + Money Market Accounts + Savings Accounts

+ Certificates of Deposit + Safe Saving Bonds + Life Insurance

+ Safe Trusts + Miscellaneous Assets + Safe Mutual Funds

+ Safe Annuities + Safe IRA + Safe Pensions

Risky Assets = Risky Saving Bonds + Brokerage Accounts + Stocks

+ Risky Mutual Funds + Risky Annuities + Risky Trusts + Risky IRA

+ Risky Pensions

And the baseline definition

ω =
Risky Assets

Risky Assets + Safe Assets



Robustness in Risky Share Return
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Controlling for traditional suspects

Following Fagereng et al. (2019) I estimate a simple model with xit = age,
earnings, education, marital status ...

ωit = α +
100∑
p=2

δpDit,p + f (xit) + µt + εit ,
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Figure 1: Percentile Dummies δp



Alternative Definitions of Financial Wealth
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excluding retirement accounts (red) and the baseline definition including housing net worth (green).



Asset Shares Across Wealth Distribution
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Model’s Risky share Across the Wealth Distribution



Financial Wealth Distribution in the SCF
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Risky and Safe Wealth Distribution
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Why Continuous time? Ben Moll’s take: Back

1. Borrowing Constraint only shows up in boundary conditions
=⇒ FOCs always hold with “=”

2. FOCs are “static” and can be computed by hand: c−γ = ∂b υk

3. Sparcity: Solving the problem = Inverting giant (but sparse) matrix.

4. Two birds with one stone: diff. operator in KF is the adjoint of
opeator in HJB
=⇒ after solving HJB, KF comes “for free”.

Bonus: It can be shown that HJBQVI =⇒ smooth pasting condition



Calibration of the Income Process Calibration

As in Laibson et al. (2020) I assume an AR(1) process for log-labor income

log(zt) = ϕz log(zt) + νt

and calibrate ϕz = 0.9 and σν = 0.2 (Guvenen et al., 2019). Then recover
the drift and the diffusion of the Ornstein-Uhlenbeck process

d log(zt) = −θz log(zt) + σzdWt ,where

ϕz = e−θz , σz =
σ2
ν

2θz
(1− e−2θz )

Finally, I set zL, zH to -1,+1 standard deviations and computer transition
probabilities from

λz→z ′ =

[
θz

2πσ2
z (1− e−2θz )

]
exp

[
− θz
σ2
z

(log(z ′)− log(z)e−θz )2

1− e−2θz

]
, (1)



Derivation of the HJBQVI Return

Discrete time version of the problem:

υj(at , bt) = max
c

u(ct)∆ + β(∆)E [υj(at+∆, bt+∆)]

s.t. at+∆ = rat at∆ + at

bt+∆ = (yj + rbt bt − ct)∆ + bt ,

for j = L,H. Given the probability pj(∆) = e−λj∆ to keep the current
income, we have

υj(at , bt) = max
c

u(ct)∆+β(∆)
{
pj(∆)E [υj(at+∆, bt+∆)]

+ (1− pj(∆))E [υ−j(at+∆, bt+∆)]
}



Derivation of the HJBQVI Return

For a small enough ∆ we have

β(∆) = e−ρ∆ ≈ 1− ρ∆

ρj(∆) = e−λj∆ ≈ 1− λj ,∆

and thus substituting into the equation above

υj(at , bt) = max
c

u(ct)∆ + (1− ρ∆)
{

(1− λj∆)E [υj(at+∆, bt+∆)]

+ λ−j∆E [υj(at+∆, bt+∆)]
}
,

re-arranging terms

υj(at , bt) = max
c

u(ct)∆ + (1− ρ∆)
{
E [υj(at+∆, bt+∆)]

+ λj∆E [υ−j(at+∆, bt+∆)− υj(at+∆, bt+∆)]
}



Derivation of the HJBQVI Return

Subtracting (1− ρ∆)υj(at , bt), dividing by ∆ and taking ∆→ 0 we get

ρυj(at , bt) = max
c

u(ct) +
E[dυ(at , bt)]

dt
+ λj (υ−j(at , bt)− υj(at , bt))}

For the missing term, note that by Ito’s Lemma we have

dυ(at , bt) =

(
∂bυ(at , bt)(yt + rbt bt − ct) + µa∂aυ(at , bt)

+
σ2a2

2
∂aaυ(at , bt)

)
dt + σa∂aυ(at , bt)dWt ,

taking expectations and noticing that E[dWt ] = 0

E[dυ(at , bt)]

dt
= ∂bυ(at , bt)(yt+rbt bt−ct)+µa∂aυ(at , bt)+

σ2a2

2
∂aaυ(at , bt)



Numerical Solution Return

Following Achdou et al. (2017), I use a finite-difference upwind scheme
where

Backward difference: ∂x ,B v =
vi − vi−1

∆x

Forward difference: ∂x ,F v =
vi+1 − vi

∆x

Central difference: ∂xx v =
vi+1 − 2vi + vi−1

(∆x)2
,

for x ∈ {a, b} and where the households problem is discretized as:

min
{
ρv− u(v)− A(v) v, v− v∗(v)

}
= 0

Main idea: Use backward difference when drift is negative and forward
difference when positive



Solving the Household’s Problem

As mentioned earlier, the discrete-time version of the HJBQVI is given by

min
{
ρv− u(v)− A(v) v, v− v∗(v)

}
= 0

• Where A is a I × J × Z transition matrix that summarizes the
evolution of the state variables.

• Note from the left branch that u(·) depends on υ... Why?

=⇒ From FOC: u′(c) = ∂b υk



Solving the Households’ Problem

Algorithm for solution:

1. As initial guess v0 use the solution to the no-adjustment case:

ρv− u(v)− A(v) v = 0

2. Given vn, find vn+1 by solving:

min

{
vn+1 − vn

∆
+ ρvn+1 − u(vn)− A(vn) vn+1, vn+1 − v∗(vn)

}
= 0,

3. Iterate until convergence.



Solving the KF Equation

Without adjustment, the solution is given by

ATg = 0,
where AT is the transpose of the transition matrix A from the HJB
equation.

• Introducing notation: define (a∗k , b
∗
k) as the optimal adjustment

targets, ` = 1, . . . , L the staked and discretized state-space, I as the
inaction regions and k∗(`) reached from the point ` upon adjustment

• Define the binary matrix M, with elements M`,k

M`,k =


1, if ` ∈ I and ` = k

1, if ` /∈ I and k∗(`) = k

0, Otherwise

=⇒ Matrix M moves points to the adjustment targets.



Solving the KF Equation

This opens two questions:

1. How we treat the density at grid points in the adjustment region?

2. How to treat points in I but from which the stochastic process for
idiosyncratic state variables ends up in the adjustment region?

The following algorithm tackles both problems:

1. Given gn, find gn+ 1
2 from:

gn+ 1
2 = MTgn

2. Given gn+ 1
2 , find gn+1 from:

gn+1 − gn+ 1
2

∆t
= (AM)Tgn+1



Richer return heterogeneity and type dependence

• Model abstracts from type dependence −→ all differences in wealth
accumulation comes from either luck or scale dependence

• However, empirical evidence suggests returns are increasing in wealth
even within narrow asset classes Fagereng et al. (2020); Xavier (2020)

• Also collapsing all risky assets into one ignores imperfect portfolio
diversification

One way to deal with this is assume a more general return process

drat = µ(a)dt + σ(a)dWt

Possible channels: Imperfect portfolio diversification, information
frictions, heterogeneous investment opportunities, and so on.



Imperfect Portfolio Diversification

Assume that the volatility of the risky asset decreases exponentially with
risky wealth a at a rate ϑ

σ(a) = σ̂e−ϑa

I choose the set of parameters Θ that minimizes the weighted deviation
between resulting moments m(Θ) from the model

Q(Θ) = (m − m̂(Θ))′W(m − m̂(Θ))

Θ̂ = arg min
Θ

Q(Θ),

Parameter Value Target Model

Fixed adjustment cost (κ) 0.19 51.2a 49.7
Exponential decay rate (ϑ) 0.01 77.8b 74.7
Scale parameter volatility (σ̂) 0.22 0.18c 0.21d

a Risky asset participation rate.
b Top 10% wealth share.
c Gomes and Michaelides (2005).



Imperfect Portfolio Diversification

Measure Data Baseline Model
Imperfect

Diversification

Top 1% 37.5 22.2 19.2
Top 5% 64.6 49.6 54.2
Top 10% 77.8 66.1 74.7
Middle 40% 19.5 33.8 26.8
Bottom 50% 0.98 0.10 -0.2

• Better fit for most of the distribution.

• However, predicted top 1% share decreases
=⇒ Model “needs” volatility to get some households to draw apart!



Decreasing Relative Risk Aversion

What if richer households “can afford to take more risk”?

Two opposing forces come to play

• Risk averse households are less willing to hold risky assets

• Risk aversion increases savings which increases wealth and thus
participation rates

Two easy ways to incorporate this:

1. Exogenous preference heterogeneity

ui (ct) =
c1−γi
t

1− γi

2. Preferences with decreasing RRA (e.g. Stone-Geary utility)

u(ct) =
(ct − c̄)1−γ

1− γ
,



Decreasing Relative Risk Aversion

I solve both extensions separately by assuming “unemployed” are more risk
averse, e.g. (γ1, γ2) = (1.5, 2.5) and calibrate c̄ following Achury et al.
(2012)

Measure Data Baseline Model
Pref.

Heterogeneity
Stone-Geary

Top 1% 37.5 22.2 23.0 20.3
Top 5% 64.6 49.6 49.4 47.3
Top 10% 77.8 66.1 65.7 63.8
Middle 40% 19.5 33.8 33.9 34.7
Bottom 50% 0.98 0.10 0.5 1.5

• Results remain overall unchanged −→ Both forces offset each other

• Very stylized examples, e.g. IES = 1/RRA
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